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STOCHASTIC MODELING OF TILLAGE-INDUCED 
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ABSTRACT. A Markov chain-based, two-pameter mo&l was developed to predict tillage-induced influences on soil 
aggregates. Model parameters for several tilhge operations were identified on two soil types with a downhill, simplex, 
multidimensional, minimization approach. Simulation results suggest that the crushing model can predict tillage-induced 
aggregate crushing and that average prediction errors are within 3% for the limited cases of verification. This study 
indicates that the stochastic simulation is better than the conventional deterministic method in estimating the tillage 
effects on soil aggregate size distribution due to apparent randomness of variability in the field data. 
Keywords. Tillage, Stochastic models, Aggregates. 

he Wind Erosion Prediction System (WEPS), 
presently being developed by the Agricultural 
Research Service, USDA (Hagen, 1991), requks T a submodel component for simulating the effects 

of various tillage and management operations performed 
on agricultural soils. As pointed out by Cole (1988), one of 
the major tillage actions on soil is crushing or breaking of 
soil aggregates. The objective of this study was to model 
the crushing effect on aggregates under different soil 
conditions and tillage practices. More specifically. the task 
was to develop a simulation model based on field collected 
pre-tillage and post-tillage samples of aggregate size 
distribution. The model will then be incorporated into the 
WEPS submodel component, where post-tillage aggregate 
size distribution values will be predicted from pre-tillage 
aggregate size distribution, tillage operation being 
performed, soil type, and possibly other factors. 

A deterministic model (Le., all the components of the 
model are deterministic), equation 1, originally developed 
for modeling solid grinding processes such as coal and 
rocks (Austin, 1971 /1972), was first attempted to model 
the soil aggregate crushing process. Equation 1 is derived 
based on the conservation of mass principle, i.e., the mass 
of material in size class i after one stage of breakage equals 
the sum of material broken into size class i from larger size 
classes plus the original material in size class i minus the 
material broken out of size class i. 

N 

w1 Cil= (l - ' i )  wo Ii1 + c (Bk,i+l - Bk,i) 'kw0 Ckl (l) 
k-i+l 
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where 
wo[i] =the initial mass aggregate size fraction 

distribution 
wl[i] =the final mass aggregate size fraction 

distribution 
Bu -the cumulative distribution function (mass 

fraction of material, broken from size class k 
that falls into size classes smaller than size 
interval i) 

=the selected fraction of size interval i for 
breakage 

=the selected fraction of size interval k for 
breakage 

= the total number of sieve sizes 

s i  

sk 

N 
Many functional forms for B k i  and si (Austin, 1984) 

were tested with equation 1 and the back-calculation 
procedures used by Gupta et al. ( 1981). The best modeling 
results were achieved when Bli and si  assumed the 
following form: 

where 
gmd, gmd, = the geometric mean diameter of size 

class i and k, respectively, with gmdi 

=the percent of breakage from the 
e gmdk 

s, 

a, B = parameters 
However, it was determined that the equation 1 based 

deterministic crushing model was inadequate due to the 
following observations: 1) it was very difficult to get a 
consistent estimation of a and f3 because of significant 
variance in the field data; 2) it was hard to choose 
appropriate functional forms for Bk,i and si since 
information on their individual terms were not obtainable 
from the field data and the quantity of data limited the 
number of parameters that could potentially be used; and 

largest size class 
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Table 1. Selected dl properties 
Eudora Kimo silty 

ProDertv Silt Loam Clav Loam 
Textural composition 

Sand (2.0-0.05 mm) (96) 

Clay (c 0.002 mm) (96) 
Silt (0.05-0.002 mm) (96) 

Water content at 
-33J/kg(g/g) 
-IO00 J / kg (g / g) 

Standard Proctor test 
Maximum density (Mg / m3) 
Optimum water content (g / g) 

Organic matter (96) 

PH 
Exchangeable cations (ppm) 

K 
Ca 
Mg 
Na 
AI 

29.1 
54.5 
16.4 

0.165 
0.061 

1.58 
0.155 

1 S O  

6.30 

149 
1698 
208 

8 
0 

20.0 
44.0 
36.0 

0.249 
0.140 

1.53 
0.192 

2.20 

6.50 

350 
3470 
330 
14 
0 

3) parameters a and f3 were strongly dependent on the 
value of smax, which changes significantly with soil 
conditions. 

As a result of the difficulties with the deterministic 
model, a stochastic approach was pursued to model the 
crushing process because: 1) the field data contained 
significant variance which could be treated as a random 
process, and 2) a unified treatment would enable us to 
avoid the complications encountered with a separate Bv 
and si. This article describes the effort in that stochastic 
model development. 

EXPERIMENTAL DATA SETS 
The aggregate size distribution (ASD) data sets used in 

this study were obtained from several experimental field 
studies, some of which have been published (Tangie et al., 
1990; Ambe, 1991; Wagner et al., 1992). All experiments 
were conducted on two soils (table 1): Kimo silty clay 
loam (clayey over loamy, montmorillonitic, mesic Aquic 
Hapludolls) and Eudora silt loam (coarse-silty, mixed, 
mesic Fluventic Hapludolls) at the Kansas River Valley 
Experiment Field near Topeka, Kansas. Individual 
objectives and experimental designs of these field studies 
varied; however, each of these experiments contained pre- 
and post-tillage ASD measurements of which some were 
suitable for use in the development of the stochastic 
aggregate crushing model. Of the suitable data sets, half of 
the measurements were used for determination of model 
parameters and the remaining measurements for 
determining accuracy of model predictions. 

The quantity and number of replications of ASD 
samples used varied among the experiments, but all were 
collected and processed in the same manner. Pre-tillage 
ASD samples (approx. 10 kg) were collected from the first 
15 cm and post-tillage ASD samples were obtained from 
within the resulting tillage tool processing depth. These 
samples were extracted at randomly selected locations 
(between wheel tracks) in each plot using a 30- x 23-cm 
flat, square-comered shovel, as described by Chepil(1962), 
and placed in 46 - x 30 - x 6-cm plastic tubs. All aggregate 

size distribution samples were air-dried in a greenhouse 
prior to sieving with a modified combined rotary sieve 
(Lyles et al., 1970). 

Suitable ASD data sets were available for a variety of 
tillage implements, although the size of the data sets varied 
among them, from having multiple data sets for both soils 
to single data sets for only one soil. All speeds and depths 
were typical for each respective tillage operation. The 
ASAE Standard S414 tillage implement names, 
descriptions, speeds, and processing depths were: 

Offset disk harrow - 45 cm diameter blades with a 
30 cm inter-disk spacing (8 km/h, 16 cm). 
Chisel plow - two ranks of 36 cm deep, ridgedly 
mounted curved shanks with point chisels, having an 
inter-tool rank spacing of 60 cm (8 km/h, 19 cm). 
Field cultivator - three ranks of spring teeth with an 
inter-tool rank spacing of 45 cm (9 km/h, 10 cm). 
Rotary tiller - garden tractor powered rotary tiller 
with a blade radius of 16 cm (4 km/h, 18 cm). 

MODEL DESCRIPTION AND IDENTIFICA~ON 
The stochastic model* for the crushing process was a 

Markovt chain model (Bhat, 1984), which can be stated as 
follows in the context of the soil aggregate crushing 
process: 

A soil aggregate is assumed to consist of many 
particles, with each having an infinitesimal volume 
and a unit mass. The soil particles can travel only 
downward from a larger aggregate size class to 
smaller aggregate size classes after each tillage pass 
(crushing of an aggregate). If a size class is called a 
“state”, then the transition of soil particles from one 
state to another can be treated as a completely 
random event. A probability matrix, P[i,j], can be 
constructed for all possible transitions occurring in 
the soil when its aggregate size distribution (mass 
fractions across different size classes) shifts or 
transfers from wo[i] to ~ ~ [ k ] ( ~  to i-l) after one 
crushing stage (tillage pass). P[i,j], often called a 
transition matrix, maintains the properties of a 
Markov chain and does not change with the number 
of tillage passes performed but depends on the type 
of tillage and the specific soil conditions. 

Mathematically, the Markov chain-based crushing 
model is of the form: 

(3) 

The effectiveness of the model relies on how accurately 
the transition matrix, P[ ij], can be estimated. According to 
the model statement, the transition matrix can be 
generalized as a lower triangular matrix, where the states 
with smaller index values correspond to the smaller 
aggregate size classes (size intervals) and vice versa. 

* A stochastic mcdel has at least one component that will be treated as 
exhibiting random behavior. 

t A Markov process is one in which the next “state” is dependent only 
on the present “state” and is independent of any previous “state”. 
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Because it is almost impossible to estimate each 
transition probability (pij) individually, we assumed that 
the pij follows a binomial distribution4 as shown in 
equabon 5. The binomial distribution is a typical discrete 
probability distribution function. 

p i j = (  i-l )p:l(l-pi)i-j 

(5) 
i-1 

i -  1,2, .  . . , n ; j =  1,2, .  . . , i  

In equation 5, pi is defined as the probability function of 
breakage, which has a value within the interval [0,1] and 
generally can be expressed as an algebraic function of 
sieve size (xi) and a number of parameters, al, a2, . . ., a,,.,. 

The probability function of breakage (pi) reflects how 
much breaking is occurring in the aggregate size class i. A 
large pi indicates a small percentage of soil aggregates of 
size class i that will break into smaller size classes. If 
pi - 1, then no aggregates of size class i are being broken 
down, and if pi = 0, then all of the aggregates in size class i 
are being broken down into smaller size classes. 

It is presumed that pi is related to the tillage tool, speed 
and depth, soil properties and conditions, and sieve cut 
sizes used in measuring wo[i] and wl[i]. Therefore, the q 
parameters in equation 6 were expected to be functions of 
those conditions. 

In this analysis, the focus was on a two parameter 
representation of a breakage probability function such as 
equation 7, primarily because: 1) identifying multiple 
parameters was complicated and 2) the size of the data file 
for model parameterization was small (eight pairs of data 
points as shown in table 2 for an eight-cut rotary sieve). 

$ This probability distribution of Bernoulli trials consists of repeated 
independent trials. Each trial has two possible outcomes, and the 
corresponding probability remains the same for all trials. 

Table 2. A sample crushing data form 
si type Silt loam 
Tillage tool Offset disk 
Experiment ‘ 

Sieve-size 
index (1) 0 1 2 3 4 5 6 7 8  

Sieve-size 3 
(mm) 0.01 0.42 0.84 2.0 6.36 19.05 44.45 76.2 152.4 

ASD on masp 
bask 

index 91-8-ASD111 .I 

Before tillage 

After tillage 
(wo[i]) (%) 7.8 2.9 6.5 14.9 24.4 25.8 10.0 7.6 

(wl[i]) (96) 7.9 45 10.3 20.4 26.3 20.8 6.9 2.9 

Therefore, two parameters were chosen to reflect data 
variability. 

The model identification included finding a suitable pi 
function and then searching for function parameters for 
different tillage tools and soil conditions. Several 
functional representations of pi were identified. Initial 
study suggested that four functions were most promising: 

(9) 

where 

X i  = individual sieve sizes 
x, 
a. B 
The back-calculation procedure used to estimate a and 

B in the above equations was based on known wo[i] and 
wl[i]. It is a multidimensional minimization of the target 
function: 

= the maximum sieve size 
= the parameters to be determined 

Two types of multi-dimensional minimization 
algorithms were used in the parameter identification. One 
was the gradient-based method which required calculation 
of derivatives for the function (Press et al., 1988). We 
found that this method converged slowly and was very 
sensitive to the initial conditions. The other type 
minimization algorithm used included gradient-free 
methods, such as 1) the Powell minimization, and 2) the 
downhill simplex method. We found that the two gradient- 
free methods gave almost identical results and showed less 
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Table 3. Parameters of crushing model for four types of tillage t d s  

Silt laam Silty Clay Loam 
No. No. 

Tillage Data Data 
Implement a $ Sets a fl Sets 

Rotary Mean 1.40 -1.20 5 1.50 0.56 3 
Tiller S.D. 0.60 1.70 0.30 0.55 

Disk Mean 2.80 0.75 9 4.30 2.00 8 
Harrow S.D. 0.50 0.28 1.60 1.50 

Chisel ' Mean - - - 2.40 -2.00 4 
Plow S.D. - - 1.20 4.60 

Field Mean 3.00 -0.22 1 3.00 1.80 2 
Cultivator S.D. - - 0.90 0.50 

Table 4. Roles of thumb for determining degree of crushing 
based on model parameters 

Rule 1 If a is small a c 2  'Ihen a high percentage 
of aggregates from all 
size classes is beiig 
crushed or broken 
down. 

Then a high percentage 
of large aggregates is 
being crushed or broken 
down. 

Then only a small 

is beiig crushed. 

Rule 2 If a is not small and 
fl is approximately 
one-half of a 

I f  a is large and $ is 
Small fl 5 1.5 amount of aggregates 

a 2 2 and 
fl = 112 a 

Rule 3 a 2 3 and 

sensitivity to the initial conditions. Most of the calculations 
were carried out with the downhill simplex method. A 
computer program was written in the C language and based 
on code published by Press et al. (1988). 

Data used for model parameterization were extracted 
from experimental field data. The data were grouped into 
the format shown in table 2 after computing the mass 
percentage distributions, removing data sets containing 
apparent errors and averaging multiple observations for 
each measurement. Because of field data collection 
problems and randomness associated with the tillage 
operation and field conditions, relatively large variances 
still occurred in the data sets. 

REWLTS AND DISCUSSION 
The most suitable functional representation for pi was 

found to be the form of equation 1 1  as shown in 
equation 13. 

where5 
1 = 1,2,3, . . . , n (number sieves) 

5 For a rotary sieve of n sieves, x, and x,,, are arbitrary; minimum and 
maximum aggregate sizes a~ assumed to exist in the data. The values 
used in this analysis were 0.01 mm and 152.4 mm, respectively,as 
shown in table 2. 

<0.42 0.42-0.80 8-2.0 2.0-6.46.4-19.1 19.1-4545-76.2 >76.2 

Aggregate Size Closs, mm 

Figure I-Crushing by offset disk on silty clay loam with many large 
aggregates. 

gmdi =geometric means of and x i  (geometric 
mean diameter of aggregates in each size 
class) 

g m k  = geometric mean of xn and xnTl (geometric 
mean diameter of aggregates in largest size 
class) 

Parameter CL reflects the crushing of all soil aggregates 
regardless of size. As a decreases, the percentage of soil 
aggregates breaking down increases. Parameter f3 reflects 
the unevenness of crushing among aggregates in different 
size classes. Large values mean that crushing mainly 
affects the large soil aggregates. 

The parameters in the model represented by equations 3, 
4,5, and 13 were estimated for the four tillage tools using 
the back calculation procedure. The results are listed in 
table 3. Although the parameters in table 3 are derived 
from a limited number of field data sets, they gave good 
indications of how much crushing each tillage tool caused. 
Based on the a values for the silt loam, the rotary tiller 
produced the most overall crushing and the field cultivator 
produced the least. The disk harrow had more crushing of 
larger aggregates occurring and is reflected by its relatively 
large @ value. For the silty clay loam, the rotary tiller still 
generated the most crushing; whereas, the disk harrow and 
field cultivator exhibited strong effects on large aggregates 
(large @ values). 
To judge how much crushing is caused by a tillage 

implement based upon its two parameters, the rules of 
thumb in table 4 can be applied. 

<0.42 0.42-0.80.8-2.0 2.0-6.46.4-19.1 19.1-4545-76.2 >76.2 

Aggregate Size Class, mm 

Figure ZCrushing by offset disk on silty clay loam with few large 
aggregstes. 
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C0.42 0.42-0.80.6-2.0 2.0-6.46.4-19.1 19.1-4545-76.2 >76.2 

Aggregate Size Class, mm 

Figure 3-Crushing by offset disk on silty clay loam at %gh” water 
content 

c0.42 0.42-0.80.8-2.0 2.0-6.46.4-19.1 19.1-4545-76.2 >76.2 

Aggregate Size Class, mm 

Figure Uhushing by offset disk on silty clay loam at “optimum” 
water content. 

The relatively large standard deviations shown in table 3 
that were encountered in the parameter identification 
processes were caused by the variability in the field data. 
Major problems can exist in collecting valid field data. For 
example, (a) measuring the ASD of compacted soil, 
(b) obtaining accurate estimates of field ASD values of 
sandy soils because of aggregate susceptibility to damage 
during the rotary sieving process, and (c) drying effects on 
ASD samples obtained at different water contents. 

With the parameters identified, the crushing model was 
further verified with limited data sets from other field 
experiments conducted on the same sites. Figures 1 and 2 
show simulation results for the offset disk on a silty clay 
site. Results show that the offset disk causes significant 
breakup of large clods when they are present (fig. 1) and 
causes little breakup of the same soil when large clods are 
not present (fig. 2). 

The model reflects the influence of soil water contents 
at tillage as demonstrated by Wagner et al. (1992). Using 
their data, the parameters of the model were identified for 
the two soils under “high”, “optimum”, and “low” water 
contentsll. The results for the silty clay loam are shown in 
figures 3 through 5, where it can be seen that the most 
breakup of soil aggregates occurred at the optimum water 

c0.42 0.42-0.80.8-2.0 2.0-6.46.4-19.1 19.1-4545-76.2 >76.2 

Aggregate Size Closs. mrn 

Figure SCmshii by offset disk on silty clay loam at “low” water 
content. 

content (fig. 4) and the a parameter of the model is 
significantly lower than those at the high and low water 
contents. Since the effect of water content on the silt loam 
is not as strong as on the silty clay loam, the change in a 
under the three water contents was not significant (figs. 6 
through 8). However, a was again lowest at the optimum 
water content (fig. 7). This suggests that the parameters of 
the crushing model could be expanded to be a function of 
soil water content and potentially reduce the variability 
observed in determining these parameter values, especially 
in higher clay content soils. 

The crushing of the silt loam soil by the offset disk 
displayed different characteristics than the crushing of the 
silty clay loam as shown in figures 3 through 8, because the 
silt loam soil contained fewer large ̂ aggregates. The figures 
also indicate that the model can predict the disk-induced 
crushing processes reasonably well. Prediction errors, 
defined as the average error across all the size classes, are 
within three percent for all cases. However, the crushing 
model needs to be further verified with data from other 
tillage experiments. 

The stochastic crushing model also can be used in 
reverse to estimate pre-tillage aggregate mass fraction 
distributions based on the measurement of the post-tillage 
distribution by reversing the transition matrix, P[ij]. 
Another possible application is modeling a series of 
crushing events as a single operation by multiplying 
together the transition matrix associated with different 
tillage devices. 

0.3 1 Oalo: 123.osd W C  0.221 ( d q )  Sill Loom 

C .- 
c 
0 0 

I= 0.2 
on 

I 
0 

0 .- 
% 0.1 e 
3 
a, 

. .  1 Simulation Error: 0.56 
a: 2.456 @: 0.709 

Iniliol Conaiiion 
Find Condition (Aciual) 

A Fino1 Condition (S;mulot;onh$j 

It ‘‘Optimum’’ water content refers to the water content that will produce 
the maximum soil bulk density from a standard Proctor test. “Low” 
water content is a value 40 to 60% lower than the “optimum” and the 
“high” water content refers to a value 40 to 60% greater than the 
“optimum”. 

c0.42 0.42-0.80.6-2.0 2.0-6.46.4-19.1 19.1-4545-76.2 >76.2 

Aggregate Size Closs, rnm 

Figure &Crushing by offset disk on silt loam at “high” water 
content 
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m: 2.341 @: 0.483 
Initial Condition 

C0.42 0.42-0.80.8-2.0 2.0-6.46.4-19.1 19.1-45 45-76.2 >76.2 

Aggregate Size Class, rnrn 

Figure 7-Crushing by offset disk on silt loam at “optimum” water 
content. 

SUMMARY AND CONCLUSIONS 
The equation 1 based deterministic crushing model 

failed to adequately describe the tillage-induced aggregate 
crushing because of the difficulties in selecting appropriate 
functions and identifying their associated parameters. The 
stochastic approach was taken because the crushing 
pracess could be described as a Markov process, allowing a 
relatively simple probability function to be selected. This 
approach was successful in that it gave consistent 
estimation of the parameters involved. However, to 
increase the precision of parameter identification, field data 
measurement and collection procedures will require 
improvement to reduce the variability in pre- and post- 
tillage aggregate size distribution data. Also, a major 
challenge exists to parameterize the model for various soil 
and tillage conditions. This will require a large amount of 
field data from well designed and executed experiments. 

The study can be summarized as follows: 
Tillage-induced soil aggregate crushing can be 
approximated as a random process. The Markov 
chain-based, two-parameter, stochastic crushing 
model gave consistent and fairly accurate estimations 
of this random process. 
The physical meaning of the parameters were 
explored. Empirical rules explaining how these 
parameters characterize the crushing process were 
derived. 
Simulation of disk-induced crushing, based on the 
limited data analyzed, contained simulation errors 
within 3%. 
The stochastic crushing model was successful at 
simulating tillage-induced aggregate crushing on two 
types of soils (under an aggregated condition) and 
gave a consistent estimation of the parameters 
involved. 
More tillage data, with other implements under 
various soils and soil conditions, are needed to 
extend the application of this modeling approach. 

Silt Loon 
0’3 

Data: 123.asd W C  0.102 (g/g) 
Simulation Error: 1.69 
m: 3.11 3 p :  1.546 

t0.42 0.42-0.80.8-2.0 2.0-6.46.4-19.1 19.1-4545-76.2 >76.2 

Aggregate Size Class, rnrn 

Figure Il-crushiig by o f k t  disk on silt loam at ‘low” water content. 
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